検索対象:     
報告書番号:
※ 半角英数字
 年 ~ 
 年
検索結果: 2 件中 1件目~2件目を表示
  • 1

発表形式

Initialising ...

選択項目を絞り込む

掲載資料名

Initialising ...

発表会議名

Initialising ...

筆頭著者名

Initialising ...

キーワード

Initialising ...

使用言語

Initialising ...

発行年

Initialising ...

開催年

Initialising ...

選択した検索結果をダウンロード

論文

Numerical simulation of the solid particle sedimentation and bed formation behaviors using a hybrid method

Sheikh, M. A. R.*; Liu, X.*; 松元 達也*; 守田 幸路*; Guo, L.*; 鈴木 徹*; 神山 健司

Energies (Internet), 13(19), p.5018_1 - 5018_15, 2020/10

 被引用回数:7 パーセンタイル:26.21(Energy & Fuels)

In the safety analysis of sodium-cooled fast reactors, numerical simulations of various thermal-hydraulic phenomena with multicomponent and multiphase flows in core disruptive accidents (CDAs) are regarded as particularly difficult. In the material relocation phase of CDAs, core debris settle down on a core support structure and/or an in-vessel retention device and form a debris bed. The bed's shape is crucial for the subsequent relocation of the molten core and heat removal capability as well as re-criticality. In this study, a hybrid numerical simulation method, coupling the multi-fluid model of the three-dimensional fast reactor safety analysis code SIMMER-IV with the discrete element method (DEM), was applied to analyze the sedimentation and bed formation behaviors of core debris. Three-dimensional simulations were performed and compared with results obtained in a series of particle sedimentation experiments. The present simulation predicts the sedimentation behavior of mixed particles with different properties as well as homogeneous particles. The simulation results on bed shapes and particle distribution in the bed agree well with experimental measurements. They demonstrate the practicality of the present hybrid method to solid particle sedimentation and bed formation behaviors of mixed as well as homogeneous particles.

論文

Numerical simulation of solid-particle sedimentation behavior using a multi-fluid model coupled with DEM

河田 凌*; 大原 陽平*; Sheikh, Md. A. R.*; Liu, X.*; 松元 達也*; 守田 幸路*; Guo, L.*; 神山 健司; 鈴木 徹

Proceedings of 17th International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH-17) (USB Flash Drive), 14 Pages, 2017/09

Numerical simulations of various thermal-hydraulic phenomena with multiphase and multicomponent flows in postulated core disruptive accidents (CDAs) are regarded as particular difficulties in the safety analysis of liquid-metal cooled reactors. In a material relocation phase of CDAs, core debris may settle on the core-support structure and/or in the lower inlet plenum of the reactor vessel and then form the debris bed. In particular, the shape of debris bed is crucial for the relocation of molten core and heat-removal capability of the debris bed as well as re-criticality. In the present study, a hybrid numerical simulation method, which couples the multi-fluid model of the 3D fast reactor safety analysis code SIMMER-IV with the discrete element method (DEM), was applied to analyze sedimentation and bed formation behaviors of core debris. In the present study, 3D simulations were performed for a series of particle sedimentation experiments with gravity driven discharge of solid particles into a quiescent cylindrical water pool. The present simulation predicts the sedimentation behavior of mixed particles with different density or particle size as well as homogeneous particles. The simulation results on bed shapes and particle distribution in the bed agree well with the experimental ones. They demonstrate the fundamental applicability of the present hybrid method to solid-particle sedimentation and bed formation simulations.

2 件中 1件目~2件目を表示
  • 1